Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A common narrative about protected areas (PAs) is that social benefits accrue globally whereas burdens are felt locally, particularly in lower income countries. Researchers tend to focus on conflicts, and data on perceptions of PAs tend to be very locally specific and disproportionately available across regional contexts. As a result, we know surprisingly little about how benefits from PAs are distributed among local populations. Here, we use data from the Wildlife Conservation Society’s social monitoring program to map patterns of perceived benefits from more than 3,500 households around five PAs in Central Africa and Madagascar. We examine where benefits are perceived and what benefits are perceived. We find that in all five cases, the majority (55–84 percent) of households aware of the PAs perceive some form of benefit, but sources and spatial patterns of benefits vary significantly. We draw from these patterns to propose that, at least for forest PAs in lower income regions, surrounding forest cover might be a key factor conditioning the frequency, spatial arrangement, and type of perceived benefits. Research on the social impacts of PAs should attend to this geographic variation. Closer attention to variability in local perceptions of PA benefits can improve conservation practice by informing where different types of programming might be best received and flagging potential for long-standing local inequalities to either be mitigated or perpetuated by interventions associated with PAs.more » « lessFree, publicly-accessible full text available June 16, 2026
-
null (Ed.)Small soft robotic systems are being explored for myriad applications in medicine. Specifically, magnetically actuated microrobots capable of remote manipulation hold significant potential for the targeted delivery of therapeutics and biologicals. Much of previous efforts on microrobotics have been dedicated to locomotion in aqueous environments and hard surfaces. However, our human bodies are made of dense biological tissues, requiring researchers to develop new microrobotics that can locomote atop tissue surfaces. Tumbling microrobots are a sub-category of these devices capable of walking on surfaces guided by rotating magnetic fields. Using microrobots to deliver payloads to specific regions of sensitive tissues is a primary goal of medical microrobots. Central nervous system (CNS) tissues are a prime candidate given their delicate structure and highly region-specific function. Here we demonstrate surface walking of soft alginate capsules capable of moving on top of a rat cortex and mouse spinal cord ex vivo , demonstrating multi-location small molecule delivery to up to six different locations on each type of tissue with high spatial specificity. The softness of alginate gel prevents injuries that may arise from friction with CNS tissues during millirobot locomotion. Development of this technology may be useful in clinical and preclinical applications such as drug delivery, neural stimulation, and diagnostic imaging.more » « less
-
New materials are advancing the field of soft robotics. Composite films of magnetic iron microparticles dispersed in a shape memory polymer matrix are demonstrated for reconfigurable, remotely actuated soft robots. The composite films simultaneously respond to magnetic fields and light. Temporary shapes obtained through combined magnetic actuation and photothermal heating can be locked by switching off the light and magnetic field. Subsequent illumination in the absence of the magnetic field drives recovery of the permanent shape. In cantilevers and flowers, multiple cycles of locking and unlocking are demonstrated. Scrolls show that the permanent shape of the film can be programmed, and they can be frozen in intermediate configurations. Bistable snappers can be magnetically and optically actuated, as well as biased, by controlling the permanent shape. Grabbers can pick up and release objects repeatedly. Simulations of combined photothermal heating and magnetic actuation are useful for guiding the design of new devices.more » « less
-
Soft, untethered microrobots composed of biocompatible materials for completing micromanipulation and drug delivery tasks in lab-on-a-chip and medical scenarios are currently being developed. Alginate holds significant potential in medical microrobotics due to its biocompatibility, biodegradability, and drug encapsulation capabilities. Here, we describe the synthesis of MANiACs—Magnetically Aligned Nanorods in Alginate Capsules—for use as untethered microrobotic surface tumblers, demonstrating magnetically guided lateral tumbling via rotating magnetic fields. MANiAC translation is demonstrated on tissue surfaces as well as inclined slopes. These alginate microrobots are capable of manipulating objects over millimeter-scale distances. Finally, we demonstrate payload release capabilities of MANiACs during translational tumbling motion.more » « less
An official website of the United States government
